Evolutionary Self-Expressive Models for Subspace Clustering
نویسندگان
چکیده
منابع مشابه
High-Rank Matrix Completion and Clustering under Self-Expressive Models
We propose efficient algorithms for simultaneous clustering and completion of incomplete high-dimensional data that lie in a union of low-dimensional subspaces. We cast the problem as finding a completion of the data matrix so that each point can be reconstructed as a linear or affine combination of a few data points. Since the problem is NP-hard, we propose a lifting framework and reformulate ...
متن کاملA Self-Training Subspace Clustering
Accurate identification of the cancer types is essential to cancer diagnoses and treatments. Since cancer tissue and normal tissue have different gene expression, gene expression data can be used as an efficient feature source for cancer classification. However, accurate cancer classification directly using original gene expression profiles remains challenging due to the intrinsic high-dimensio...
متن کاملOn evolutionary subspace clustering with symbiosis
Subspace clustering identifies the attribute support for each cluster as well as identifying the location and number of clusters. In the most general case, attributes associated with each cluster could be unique. A multi-objective evolutionary method is proposed to identify the unique attribute support of each cluster while detecting its data instances. The proposed algorithm, Symbiotic Evoluti...
متن کاملSelf-Expressive Decompositions for Matrix Approximation and Clustering
Data-aware methods for dimensionality reduction and matrix decomposition aim to find low-dimensional structure in a collection of data. Classical approaches discover such structure by learning a basis that can efficiently express the collection. Recently, “self expression”, the idea of using a small subset of data vectors to represent the full collection, has been developed as an alternative to...
متن کاملTowards Effective Subspace Clustering with an Evolutionary Algorithm
This paper proposes a new evolutionary algorithm for subspace clustering in very large and high dimensional databases. The design includes task-specific coding and genetic operators, along with a non-random initialization procedure. Reported experimental results show the algorithm scales almost linearly with the size and dimensionality of the database as well as the dimensionality of the hidden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2018
ISSN: 1932-4553,1941-0484
DOI: 10.1109/jstsp.2018.2877478